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Abstract. This work proposes a novel algorithm to
compute atomic charges as defined by the theory of
“atoms in molecules” (AIM). Using the divergence
theorem it is possible to express the 3D volume integral
over an atomic basin purely in terms of 2D surface
integrals. Hence, it can be proven that an atomic charge
is equal to the flux of the electric field of the whole
molecule through the atom’s complete boundary. This
boundary consists of the interatomic surfaces and the so-
called outeratomic surface, which is the open side of the
atom. When fine-tuned the algorithm can generate
atomic charges in the order of minutes without intro-
ducing any approximations. Moreover, the problem of
the geometrical cusp occurring in atomic basins and that
of multiple intersections is also eliminated. The compu-
tational overhead of computing the electric field (which
is analytical) is compensated by the gain in computing
time by eliminating one dimension of quadrature. The
proposed algorithm opens an avenue to invalidate the
oft-quoted drawback that AIM charges are computa-
tionally expensive. We explain the details of the imple-
mentation in MORPHYO01 and illustrate the novel
algorithm with a few examples.
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1 Introduction

The topological analysis of the electron density has
proven to be an attractive method to extract chemical
insight from modern ab initio wave functions. Also
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known as the theory of “atoms in molecules” (AIM)
[1, 2], this method is currently used as an interpretative
tool in many areas ranging from high-resolution
crystallography to mineralogy, transition-metal chemis-
try and biochemistry [3]. Although software to obtain
atomic properties has been available since the 1980s
[4, 5] most AIM applications incorporate only critical
point information and visual representations of the
electron density gradient vector field. Of the atomic
properties, such as energy, dipolar polarisation and
distributed polarisability, the atomic charge has re-
ceived most attention. This is understandable since
atomic charges continue to play a dominant role in the
construction of force fields and in the chemical
interpretation of charge distribution and charge transfer
inside a molecule (including van der Waals complexes).
Over the years many population methods have been
designed to meet a need for purpose-designed atomic
charges. Occasionally the AIM theory is mistaken to
be a population method although it has never been
developed with that goal in mind. Instead, since its
early development as a virial partitioning scheme it has
its roots in quantum mechanics and generates atomic
charges almost as a by-product.

In this article we address an issue that has plagued
AIM since its inception; namely, the computational cost,
accuracy and robustness of atomic integration algo-
rithms. Compared to other methods to obtain atomic
charges, such as the Mulliken or the natural population
analysis [6], one needs sophisticated algorithms to obtain
AIM charges in a reasonable time. Since the first algo-
rithms [4, 5] for atomic integration became available
progress [7-10] has been made in terms of robustness,
accuracy and speed. The resulting algorithms were im-
plemented in programs such as GAUSSIANO9S [11],
MORPHY98 [12] and AIMPAC [13]. They have in
common that they obtain the atomic charge by a volume
integral of the electron density over the so-called atomic
basin, the region of 3D space containing the gradient
paths attracted by the nucleus inside the atom. The
current algorithm obtains the atomic charge via surface
integrals only.
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In the next section we explain the essential idea be-
hind the new algorithm and its detailed implementation
is explained in Sect. 3, using water as a pilot system.
Subsequently, in Sect. 4, we illustrate the advantage of
the current algorithm for atoms with geometrical cusps,
such as carbon in methanal.

2 Atomic charges from surface integrals

/ / drv pchdrge =

In this section we explain the main idea behind the new
integration algorithm. The divergence theorem [14]
states that the flux of a vector field A out of a closed
surface dQ equals the 3D integral of the divergence of A
over the volume enclosed by the surface 0Q or

dV(VeA)= [ [ dS(Aen) (1)
Q 0Q

/// dechdrge

where 0Q is the oriented closed surface that bounds Q.
The proof of this theorem essentially reduces to a
cancellation of one of the integrals in the triple (volume)
integral with the differential operator of the divergence.

Eelec( ) V Velec

As a result we are left with only two integrals
constituting the surface integral on the right-hand side
of Eq. (1). This means that it is possible to eliminate an
entire dimension of integration (2D instead of 3D)
provided one can write the integrand of the 3D integral
as the divergence of a vector field. This general problem
is formulated as follows.

Given // dV f(r), determine A such that Ve 4 = f(r).

(2)

If f(r) equals a continuous charge distribution, denoted
by pcharge(r), the differential form of Gauss’s law of
electrostatics provides the solution to the problem stated
in Eq. (2), since

Ve (E/47I) = pcharge(r)’ (3>

where E is the electric field generated by the charge
distribution. In our case pPcharge(r) is the total molecular

charge distribution involving both the electronic and the
nuclear contributions:

pcharge<r) = (—e)p(r) + eZZAé(r - RA)> (4)

where p(r) is the electron density, e is the elementary
charge and Z 4 is the atomic number of nucleus 4. The
volume integral of pcharge(r) Over a given atomic basin,
Q, yields the atomic charge, ¢(£2), since from Eq. (4) we
obtain

// dVp(r +eZZA// dVo(r —Ry) = (—e)N(Q) + eZg = q(Q), (5)

where N(Q) = [dV p(r) is the atomic population and

Q
the Dirac delta function, o, picks out the nuclear charge
inside a given atomic basin, Q. From here on we work in
atomic units, which means that e is replaced by 1.
If the vector field, A, is set equal to the total elec-
trostatic field, E, of the whole molecule (divided by 4n)
we can use the divergence theorem (Eq. 1) to write the

atomic charge, q(Q), as
// dS E[O[ [ ] n (6)

/// AV(V o Ey) =

where Eo; = Egec + Epuc 1s the total molecular electric
field due to the electronic and nuclear charge distribu-
tion. The field E. is computed [15] via

= e =

all space all space

and the field, E ., is simply

Enuc(r) - ZL_I";)’ (8)
A

|r — ry]

where r 4 is the position vector of the nucleus A.

It is important to realise that the molecular electric
field can be obtained from analytical integrals. The
electron density of a free molecule occupies all space and
hence integrals occurring in derived properties such as
the electric field have infinite boundaries, which are
much easier to tackle than finite boundaries. Moreover,
recent advances in integral evaluation [16] justifies the
computational overhead generated by the electric field
compared to that of the electron density. In view of the
finite boundaries of the integrals a completely analytical
integration of an atomic property is prohibitive [7].

Note that surface integration can, in principle, also be
used to compute an atomic volume. If we set f(r) equal
to 1 in Eq. (2) then A becomes 1/3r because Ver = 3.
Hence the flux of 1/3r through the atom’s boundary, 0Q,
equals its volume. This method is computationally very



attractive since an atom’s volume is very sensitive to the
quality of a 3D integration, especially when cusps and
long tails occur in the atom’s shape [17]. It should be
possible to solve Eq. (2) for other atomic properties
of interest, such as the kinetic energy or the dipole
moment. If the unknown vector field, A, is written as the
gradient of a scalar function, B, then the divergence
equation VeA = f(r) reduces to the Poisson equation
VeVB = V?B = f(r), which can be solved using Green’s
functions. Bader and Gatti have discussed [18] the use of
Green’s functions before in the context of AIM but for a
different purpose.

We now discuss in detail how surface integration can
be used to obtain atomic charges for a given atomic
basin, Q.

3 The algorithm
3.1 The boundary of the atom

In general, the boundary, dQ, of an atom in a free
molecule consists of the union of its interatomic surfaces
(IASs). An IAS or zero-flux surface consists of a bundle
of gradient paths originating at infinity and attracted by a
bond critical point (BCP). A BCP is a type of critical
point (a point where Vp = 0), roughly between two
nuclei, such that the electron density is a local maximum
in the TAS and a local minimum with respect to
the direction perpendicular to the IAS. For a free
molecule the IASs extend to infinity, so in principle
we could represent dQ by the IASs only, and regard
infinity as the boundary of the open side of the atom.
However, gradient paths cannot be traced accurately in
the far outer regions of a molecule (i.e. path lengths
in excess of 15 au) because Gaussian-expanded wave
functions do not show the correct asymptotic behaviour.
Moreover, the electric field does not decay rapidly to
zero in the outer regions of the molecule. As a result
we bound the atom at its open side by an envelope,
which we call the outeratomic surface (OAS). The total
atomic boundary, dQ, is then the union of the OAS
and all IASs bounding the atom inside the molecule, or
0Q = {IAS;} UOAS, 9)
where {IAS;} denotes the set of all IASs, each IAS; being
centred at the corresponding ith BCP. In order to obtain
the atomic charge one needs to compute the flux of the
total molecular electric field through 9Q.

The surfaces involved in the integration of oxygen in
water are shown in Fig. 1. The oxygen atom is bounded
by two IASs, each forming the boundary between the
oxygen and one hydrogen atom. The large open side of
oxygen constitutes the OAS, which is represented by a
part of a sphere centred on the oxygen nucleus. This
sphere is called the integration sphere (IS) and it ap-
proximates an envelope of constant electron density
typically with a value of p = 107-10"* au. In the ex-
ample shown in Fig. 1 the electron density cutoff value is
chosen to be 1077 and the concomitant radius of the IS is
5.4 au. Clearly the radius depends on the atomic number
of the nucleus and on the chosen contour value. The fact
that the OAS is represented by a simple object such as a
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Fig. 1. The atomic charge of oxygen in water via surface integrals.
The oxygen atom is bounded by two interatomic surfaces (/4Ss,
grey) and the outeratomic Surface (OAS, pure green). The
integration sphere (IS, green and green/red) has a radius of 5.4 au
determined by a p = 1077 au cutoff. Each IAS is projected onto the
IS (red). The flux through this part of the IS is subtracted from the
flux through the whole IS. The boundary of one IAS is shown in
amber. It consists of the intersection of the IAS with the IS, and is
also the boundary of the IS-projected IAS patch (red). The z-axis of
the local axes system describing this patch is shown, together with its
independent surface parameters « (angle) and / (path length on IS)

sphere is not crucial. More sophisticated representations,
conveniently given by r = f(0, ¢) are necessary if one
wishes to compute an atomic volume for example, be-
cause a typical atomic volume requires the knowledge of
the p = 0.001 au envelope. The only important issue in
the context of the atomic charge is that the OAS enables
the encompassment of virtually the entire electron den-
sity contained in the atomic basin. In other words, if the
radius of the IS is too small, some charge will not be
included in the basin. The task of the IS is just to provide
a simple and adequate boundary of the atom at its open
end, i.e. on the OAS.

The OAS can be thought of as a sphere punctured by
the IASs. As explained in the next section, it is compu-
tationally attractive to introduce the projection of an
IAS onto the IS. This projection is shown as a red sur-
face patch in Fig. 1. The OAS is simply the remainder of
the IS after the projections of each IAS onto the IS have
been subtracted, or formally

OAS = IS\{IAS; — IS}, (10)

where — IS denotes the projection of an IAS onto the
IS. Owing to the representation of the OAS as a
difference set, the flux of the electric field through the
IS-projected IASs is also literally subtracted from the
flux through the IS.
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3.2 Surface representation

It is advantageous to represent a surface of arbitrary
shape in terms of two independent parameters v and v. A
parameterised surface is a mapping from (u, v) space to
3D space (x1, x5, X3) or more precisely, a function ®: D c
R> — R’, where D is some domain in R?. The surface,
S, corresponding to the function @ is its image, i.e.
S =®(D) and D(u, v) = [x1(u, v), x>(u, v), x3(u, v)]. In
previous work [19] the IAS has been represented in this
manner.

An IAS is constructed by tracing gradient paths in the
reverse direction, away from a small circle of initial
points centered at the BCP and lying in a plane locally
tangent to the IAS. The independent parameter u is the
angle, o, fixing the initial points on the circle and v is 7,
which is the path length of a gradient path on the IAS.
An analytical representation of an IAS is obtained by
fitting Chebyshev polynomials T},(¢) to the IAS gradient
paths, which have been computed by the numerical
Runge—Kutta—Cash—Karp method [20]. The expansion
coefficients, which depend on the angular parameter o
are in turn expanded as a Fourier series. So the function
Da5(a, £) is given by

xi (o, ) :ZZ [dinm cos(mar) +d.,, sin(mo) | T,(). (11)

The OAS is actually a punctured sphere (Fig. 1)
represented as a domain D C [0, 7] x [0,27] determined
by the 3D shape of the IASs. The amber line in Fig. 1
marks the boundary of one IAS, and hence constitutes
the edge of the “hole’ that this IAS makes in the IS. The
edge of the hole in the IS appears as an arbitrary curve in
(0, @) space, possibly displaying cusps. One can show
that installing a 2D quadrature grid directly on the OAS
is very hard and is riddled with numerical pitfalls. We
explain later that it is better to integrate over the “holes”
first and then subtract it from the integration over full
(0, @) space, i.e. the IS.

If we represent the IS (i.e. the full sphere of which the
OAS is a subset) simply via the definition of polar
spherical coordinates, then ®5(0, @) is given by

x1(0, @) = ris sin O cos @,
x2(0, @) = rig sin 0'sin ¢, (12)
x3(0, 9) = ns cos 0,

where rg is the radius of the IS.

The projection of an IAS onto the IS is determined by
a mapping from a local coordinate system (o, /) to (x,
X», X3), where — in analogy with the IAS coordinate
system — / is a radial parameter and o is an angular
parameter. Figure 1 (generated using MORPHYOI [21]
and RasMol [22]) illustrates the details of this coordinate
system. The local z-axis goes through the oxygen nucleus
and the BCP corresponding to the IAS, oriented away
from the nucleus. The boundary of the IAS (amber curve
in Fig. 1) is where the IAS intersects the IS. This
boundary is also the boundary of the IAS projected onto
the IS (red patch). The local z-axis intersects this patch
at a point which can be taken as the natural centre of the
patch (analogous to the BCP for the IAS). From this

point, / measures the length of a path (purple) on the IS
terminating in an arbitrary point on the red patch. The
angular parameter o enables this path to reach any point
on the red patch. It is clear that for each IS-projected
IAS we have a mapping, given by ®Das_1s(2, £)
described by the following equations:

X1 (OC, [) =TIS Sil’l(ﬁ/?’]s) Ccos a,
x2(ot, £) = ris sin(£/ris) sin o, (13)
x3(o, £) = g cos(€/rs).

3.3 Surface integration

The flux of a vector field A through a surface S is
computed in (u, v) space over a domain D that is
determined by the boundary of S in real space:

Flux = // dS(Aen) = // dudv A e (T, x T,),
5 D »

where T, x T, is the normal to the oriented surﬁfa(ce‘)S,
and the tangen'i Vc)actors T are given by T, = ) =2y,
ox; (u,v

. i .
and T, =} =5==v; where u; is the x, y, or z unit

vector. Note that the normal has to point outwards,
away from the nucleus. This is ensured by checking if
the dot product between the normal at the BCP and a
vector from the nucleus to the BCP is positive. If not,
the sign of the flux has to be reversed. The flux through
the total boundary of the atom, 90Q, consists of three
types of contributions coming from the IS, the set of
IASs and the projection of each IAS onto the IS.
The computation of the normal T, x T, is analytical
and straightforward since each of the three types
of boundary surfaces is described by an analytical
expression.

In practice Eq. (14) is evaluated using a 2D Gauss—
Legendre quadrature. This technique has been applied
before in a differential geometrical study of the IAS [23].

3.4 Implementation

A flow chart of the most important subroutines of the
atomic charge algorithm as it is implemented in MOR-
PHYO1 [21] is shown in Fig. 2. A concise description
of each subroutine’s task is given in Table 1. Ignoring
numerous (important) details the algorithm (controlled
by the master subroutine SINTEGRAL) basically works
as follows.

The user determines a cutoff value for p, which is the
practical edge of the atom at its open end. From
this cutoff value the radius of the IS is determined and
Dias_1s(a, £) is found for each IAS (ANALOAS). The
radius of the IS is first set to the distance between the
nucleus in the integrated basin and the nearest point on
the constant p envelope. If the IS is near another nu-
cleus, large electric fields arise, which cause numerical
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| ANALOAS || ANALIAS || INTEGOASFULL | | BOUNDIAS || BOUNDOAS || INTEGIAS | | INTEGOAS |
| SURFINTEGRAND | | SURFINTEGRAND | | SURFINTEGRAND |
| EVALOAS | | EVALIAS |

Fig. 2. Simplified flow diagram of the subroutines constituting the
surface integration procedure that computes atomic charges. A
subroutine is called by another one if it is one level up and
connected to it. The subroutines are executed from left to right.

Table 1 contains a brief description of the task that each subroutine
performs. To avoid clutter in this diagram the calls to EVALOAS
and EVALIAS in SURFINTEGRAND are shown only once

Table 1. Brief description of the subroutine used in the surface integration algorithm to obtain atomic charges. The interdependence of the

subroutines is shown in Fig. 2

Module Task

SINTEGRAL Controls atomic integrations via surface integration (master subroutine)

ANALOAS Finds the radius of the integration sphere, generates a mapping between the Cartesian coordinates with respect
to the global frame and the local (o, /) coordinate system associated with the projection of each IAS patch
onto the integration sphere

ANALIAS Generates a Fourier—Chebyshev expansion (analytical expression) for a given interatomic surface

INTEGOASFULL Performs a surface integration over the full integration sphere

BOUNDIAS Computes the boundaries of a given interatomic surface determined by its intersection with the
integration sphere and fits splines to the boundary

BOUNDOAS Computes the boundary of an integration-sphere-projected interatomic surface patch in terms of the local
coordinate system, using spline functions

INTEGIAS Performs a surface integration over a given interatomic surface via Gauss—Legendre quadrature

INTEGOAS Performs a surface integration over an integration-sphere-projected interatomic surface patch. This surface
integral contribution will be subtracted from the surface integral over the integration sphere computed
by INTEGOASFULL

SURFINTEGRAND Calculates the integrand of the surface integral for a given quadrature point

EVALIAS Computes the Cartesian coordinates of a point on an interatomic surface for a given («, /) value and
the corresponding normal vector to the interatomic surface in that point

EVALOAS Computes the Cartesian coordinates of a point on a given integration-sphere-projected interatomic surface

patch for a given («, /) value and the corresponding normal vector in that point

inaccuracies in the integration of the IS. This is why the
radius of the IS is adjusted until it avoids all external
nuclei by a preset threshold distance. Then, IAS gradient
paths are traced up to a p value somewhat smaller than
the cutoff, and an analytical expression is fitted to the
IAS (ANALIAS). Consequently the boundary of each
IAS is determined by finding the intersection between it
and the IS, which results in the amber curve in Fig. 1.
This annular boundary can be expressed as a function
/1as = flogas), Which is conveniently approximated by
a spline algorithm [20] (in BOUNDIAS). Then, the
boundary of the IS-projected IAS is computed in terms
of its own local coordinates (¢pas, Zoas). The boundary
of the IS-projected IAS is identical to the boundary of
the corresponding IAS (Fig. 1). In a similar way the
boundary function /1as_1s = g(0ras—s1s) 1S again ap-
proximated by a spline algorithm (in BOUNDOAS) in
terms of the local IS-projected coordinates.

Now that the domains of the IASs and their projec-
tions onto the IS have been determined, the surface

integration can be performed (using INTEGIAS and
INTEGOAS). The integration over the IS can be
performed independently from knowledge of the IAS
boundaries since it occurs over the whole integration
sphere.

Note that the surface-based integration algorithm
requires a proper analytical expression for surfaces that
contain ring critical points or “gaps” [8]. Preliminary
work in progress has shown that such expression can, in
principle, be obtained except for IASs appearing in an
unstable conflict or bifurcation structure.

4 Examples

A simple system that demonstrates the advantage of the
current method is methanal, H,C = O. The carbon atom
in methanal is trigonal and possesses three long cusplike
tails. It has been observed that atoms with (geometrical)
cusps require large quadrature grids in 3D integration in
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order to reduce the integration error, L(2), although the
size of the grid is not always a guarantee for a low L(Q)
value [17]. In a typical type of 3D integration (excluding
the type using natural coordinates [4]) the atomic
boundary is probed by a vector centred at the nucleus.
This vector is called an integration ray and sweeps
through all possible directions and may intersect an IAS
once or more. Detecting cusps in the atom’s geometry
requires very fine probing. Moreover, finding multiple
intersections between an integration ray and the atomic
boundary can take an inordinate amount of computing
time if the analytical expression of the TAS is not known
[8]. In the current method the effect of the cusp is
eliminated because each IAS is integrated regardless of
its geometrical behaviour with respect to another IAS. In
other words, the boundary of the atom is not screened
from the nucleus — as is the case with 3D integration —
but each IAS contributes its own part to the total flux
without reference to another IAS. A surface integration
for all atoms in methanal yields atomic charges that add
up to 9 x 107® au. This result was obtained in just under
1 min using a Compaq/DEC 666 MHz personal work-
station. On the other hand, the corresponding 3D
integration yields atomic charges that add up to
3x 107 au (with a very large grid on the carbon)
requiring over 17 min computing time. Currently the
electric field is calculated externally to MORPHYO01
using the very fast PRISM algorithm [16] implemented
in GAUSSIANO98 [11]. It is possible that in the future a
simpler but less efficient implementation will be inter-
nally added to MORPHYO0I, based on the integral
recurrence algorithm of Obara and Saika [24]. The ratio
between the computing time for the 3D and the 2D
integration is about 20, but does not reflect the true gain
because the calculations are dominated by the comput-
ing time required to construct the IASs.

Another example is given by the integration of a
central carbon (C,) in a conformation of the amino acid
arginine calculated at the HF/6-31G* level, involving 392
primitives, 26 nuclei and 47 molecular orbitals. The sur-
face integration yielded ¢(2) = 0.554 in only 19.5 min.
Note that the 3D integration involved just under a mil-
lion quadrature points and the 2D integration only about
57,000. With the PRISM algorithm it took only 5 min to
evaluate the electric field in these 57,000 quadrature
points. The fact that only one quarter of the time is spent
on the evaluation of the electric field warrants further
research into the efficient and accurate representation of
IASs and the OAS. This work is currently in progress.

Current work is directed at a better representation of
an IAS, one which not only consumes less computing
time but also one which does not break down when the
IAS contains ring critical points or when the BCPs
shows a high ellipticity [8].

Finally, it should be mentioned that the proposed
method of calculating atomic charges is not only
a computational improvement but also provides an
avenue to reinterpret AIM atomic charges. Indeed, the
molecular electric field, E, has zero-flux surfaces of its
own, bounding basins in E that are neutral. The AIM
atomic charge results from the gradient vector field of p
carving out a portion of space in E. If the topology of Vp

and E is very similar then atomic charges are expected to
be nearly vanishing, because a basin in Vp will almost
coincide with a basin in E. The potential mismatch
between the topologies of E and Vp may shed light on
the nature of AIM atomic charges.

5 Conclusion

A new algorithm is proposed that calculates AIM
atomic charges using surface integrals only. The
divergence theorem expresses the atomic charge as the
flux of the total molecular electric field through the
boundary of the atomic basin. Since the molecular
electric field can be calculated analytically by very fast
algorithms, and since the surface integration requires
1-2 orders of magnitude fewer quadrature points,
an atomic charge can now be obtained within several
minutes rather than hours on a typical personal
computer or workstation for reasonably sized systems.
This approach also contributes to the robustness and
accuracy of atomic integration because it does not
suffer from the cusp problem or the multiple intersec-
tion problem. Besides a reduction in the number of
quadrature points the new algorithm should provide a
more straightforward route to obtain atomic charges.

Acknowledgements. W. den Otter is thanked for a useful discus-
sion. The referee is thanked for pointing out an interesting paper
[25], which refers to work [26] that mentioned expressing an atomic
charge as the flux of the electric field through its interatomic
boundaries.
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